China Good quality Swagelok Type Hydraulic Fitting CHINAMFG FF Coupling

Product Description

Product    Description

Product Appliaction
      Applicated in agriculture, construction, coal mining industry, machinery, garden industry, automobile industry, petroleum, etc.Our fittings have the same quality as Swagelok and Parker. We have produced many many tube fittings for our customers to replace Swagelok and CHINAMFG fittings. 

Product Name Swagelok Type Hydraulic Fitting CHINAMFG FF Coupling 
Colour Nickel white
Material Carbon steel , stainless steel , aluminium
Surface Treatment Zinc plating, nickle , plating
Thread BSPP BSPT NPT
Standard DIN GB ISO JIS BA ANSI
Connection Female

The standard sizes are from DN4mm to 32mm,and other nonstandard sizes we can do according your drawingThe material of the fittings are always carbon steelstainless steel or brass, and the material can be customized.As for the price, all of the fittings are with factory price, the more you order, the more nice price you will get

Our Company


     ZheJiang YiCheng Fluid Equipment Co.,Ltd was founded in 2008, our main products are tube fittings, pipe fittings, hose fittings, hydraulic fittings, flange and other products, widely used in high pressure hydraulic industry, cement industry, chemicals, food processing, nuclear, oil, gas, paper industry, railway and ship building.
     YC-LOK is the leader in flow control technology fields of manufacturers. We are committed to beyond the technical limits, becoming a leader in the industry. Since the establishment, we have settled the developing direction of research and develop precise valve, regulator, fluid connectors and high-tech flow control system products.

Why Choose Us

Main Product

 

Contact Us

FAQ

Q:Are you the trader or manufacturer?
A:We are professional manufacturer of some fittings and flanges widely used in high pressure hydraulic industry and many other industry. We can ensure that the quality of our fittings are controlled and reliable.

Q:What’s your capacity ?
A.Our producing capacity is 500 tons each months.(Depends on different models)

Q:Where are your company?
A:Our company and factory are all in ZheJiang   Province.The distance between them is only about 15 minutes.Welcome to your visit.

Q:Can you accept small order?
A:Certainly,we respect every customers’ choice.We also accept sample order for test.

Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. Or it is 25-30 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? Is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?
A: Payment=1000USD, 50% T/T in advance ,balance before shipment.

Q:Is there any other way to get in touch with you faster?
 
If you have a question, simply send us a quick message or inquiry. We try to answer all questions and/or inquiries within 24 hours.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

hydraulic coupling

Can hydraulic couplings be used in applications involving corrosive or aggressive fluids?

Yes, hydraulic couplings can be used in applications involving corrosive or aggressive fluids, but the choice of materials and design considerations is critical to ensure compatibility and long-term performance. Corrosive fluids, such as acids, alkalis, and certain chemicals, can pose significant challenges to hydraulic systems. Here are some key factors to consider when using hydraulic couplings in such applications:

  • Material Selection: Choose hydraulic couplings made from materials that are resistant to the specific corrosive fluid being handled. Stainless steel, certain alloys, and corrosion-resistant coatings are common choices for couplings in corrosive environments.
  • Sealing Solutions: Ensure that the couplings have effective sealing solutions to prevent fluid leakage. High-quality seals and gaskets that are compatible with the corrosive fluid are essential to maintain system integrity.
  • Chemical Compatibility: Thoroughly assess the chemical compatibility between the hydraulic fluid and the coupling materials. Consider the fluid’s temperature, concentration, and potential reactions with the coupling components.
  • Special Coatings: In some cases, using hydraulic couplings with specialized coatings or treatments can enhance their resistance to corrosion and aggressive fluids.
  • Regular Inspection and Maintenance: Implement a stringent inspection and maintenance schedule to monitor the condition of the hydraulic couplings and detect any signs of corrosion or degradation. Promptly replace any damaged or worn couplings to prevent fluid leaks and system failure.
  • Fluid Contamination: Corrosive fluids can lead to the formation of contaminants in the hydraulic system. Implement effective filtration and contamination control measures to prevent particle buildup and system damage.
  • Operating Conditions: Consider the temperature, pressure, and flow conditions of the system, as these factors can impact the corrosion resistance of the couplings and the overall system performance.

While hydraulic couplings can be used in corrosive or aggressive fluid applications, it is essential to consult with coupling manufacturers or fluid system experts to ensure proper material selection and system design. They can provide guidance on selecting the most suitable hydraulic couplings and recommend additional measures to protect the system from the adverse effects of corrosive fluids.

By employing the right materials, adopting proper maintenance practices, and taking the necessary precautions, hydraulic couplings can effectively function in applications involving corrosive or aggressive fluids, providing reliable and safe fluid power transmission.

hydraulic coupling

What are the standard sizes and thread types available for hydraulic couplings?

Hydraulic couplings come in a variety of sizes and thread types to accommodate different hydraulic system requirements. The standard sizes and thread types are specified based on industry standards and regional norms. Here are some common standard sizes and thread types for hydraulic couplings:

  • Thread Types:
    • NPT (National Pipe Thread): NPT is a widely used thread type in North America. It has a tapered thread design and requires thread sealants like Teflon tape to ensure a leak-free connection.
    • BSP (British Standard Pipe): BSP is commonly used in Europe and many other parts of the world. It can have parallel (BSPP) or tapered (BSPT) threads and often requires thread sealants for a secure connection.
    • JIC (Joint Industry Council): JIC threads have a 37-degree flare angle and are prevalent in hydraulic systems. They provide a reliable metal-to-metal seal without the need for thread sealants.
    • SAE (Society of Automotive Engineers): SAE threads are commonly used in mobile hydraulic applications. They have a 45-degree flare angle and offer excellent sealing capabilities.
    • ORFS (O-Ring Face Seal): ORFS fittings feature a flat face with an O-ring seal. They are suitable for high-pressure applications and provide a reliable leak-free connection.
  • Standard Sizes:
    • Hydraulic couplings are available in various standard sizes, typically measured in inches or millimeters. Common sizes for hydraulic couplings include 1/4″, 3/8″, 1/2″, 3/4″, 1″, and 1 1/4″ for smaller couplings and up to larger sizes like 2″, 2 1/2″, and 3″ for heavy-duty industrial applications.
    • Metric sizes, such as 6 mm, 10 mm, 12 mm, 16 mm, and 20 mm, are also commonly used in hydraulic systems, especially in countries that follow the metric system.
    • Some specialized hydraulic systems may require custom sizes to meet specific application needs.

It’s important to note that while these thread types and sizes are commonly used, there may be other proprietary or industry-specific thread types and sizes depending on the manufacturer or application requirements. When selecting hydraulic couplings, it’s essential to ensure that the chosen couplings match the thread type and size of the corresponding components in the hydraulic system to ensure a proper and secure connection.

Hydraulic coupling manufacturers often provide detailed specifications and technical information about their products, including the available thread types and sizes, to help users select the right couplings for their specific hydraulic system needs.

hydraulic coupling

What are the key design considerations when using hydraulic couplings in hydraulic systems?

Designing hydraulic systems with hydraulic couplings requires careful consideration of various factors to ensure optimal performance, reliability, and safety. Here are the key design considerations:

  1. Fluid Compatibility: Select hydraulic couplings made from materials compatible with the hydraulic fluid used in the system. Incompatible materials may lead to chemical reactions, corrosion, or degradation of the coupling, affecting its performance and service life.
  2. Pressure Rating: Ensure that the hydraulic coupling has an adequate pressure rating to handle the maximum operating pressure of the hydraulic system. Using a coupling with a lower pressure rating may lead to failure and system leaks.
  3. Temperature Range: Consider the temperature range in which the hydraulic system will operate. Choose a hydraulic coupling that can withstand the minimum and maximum temperatures without deformation or loss of performance.
  4. Torsional Stiffness: Evaluate the required torsional stiffness of the coupling based on the system’s torque demands. A coupling with insufficient torsional stiffness may lead to excessive vibrations and decreased system accuracy.
  5. Misalignment Compensation: Hydraulic couplings should be able to accommodate misalignments between the driving and driven shafts. Consider the angular, radial, and axial misalignment capacity of the coupling to prevent excessive stress on the system components.
  6. Speed and Torque Requirements: Determine the speed and torque demands of the hydraulic system. Choose a coupling that can handle the required torque and rotational speed to ensure efficient power transmission.
  7. Environmental Conditions: Factor in the environmental conditions the hydraulic system will be exposed to, such as moisture, dust, chemicals, or extreme temperatures. Select a coupling with appropriate coatings or materials to withstand these conditions.
  8. Overload Protection: Consider whether overload protection is necessary for the hydraulic system. Some hydraulic couplings offer built-in overload protection features, which can be beneficial in preventing damage during unexpected load spikes.
  9. Installation and Maintenance: Choose a hydraulic coupling that is easy to install and maintain. Accessible coupling designs simplify inspection and servicing, reducing downtime and maintenance costs.
  10. Size and Weight: Consider the available space and weight constraints in the system. Opt for a hydraulic coupling that fits within the available space and meets the weight limitations without compromising performance.

By carefully considering these design considerations and selecting the appropriate hydraulic coupling, designers can ensure a reliable and efficient hydraulic system that meets the specific requirements of the application. Regular maintenance and proper coupling installation also play a crucial role in prolonging the life and performance of the hydraulic system.

China Good quality Swagelok Type Hydraulic Fitting CHINAMFG FF Coupling  China Good quality Swagelok Type Hydraulic Fitting CHINAMFG FF Coupling
editor by CX 2024-04-29